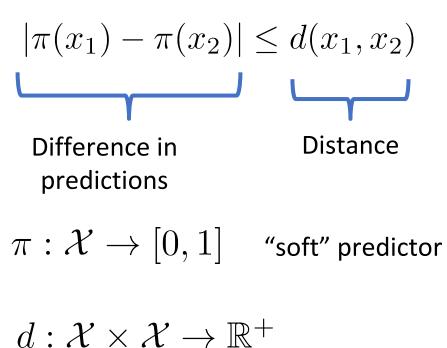
Metric-Free Individual Fairness In Online Learning

Algorithmic Fairness

- Most of previous work focuses on group fairness
- E.g. statistic (group₁) = statistic(group₂) where statistic can be FPR, positive predictive value, etc and groups are defined according to the protected attributes
- Easy to operationalize and reason about but weak guarantees at the individual level

Individual Fairness

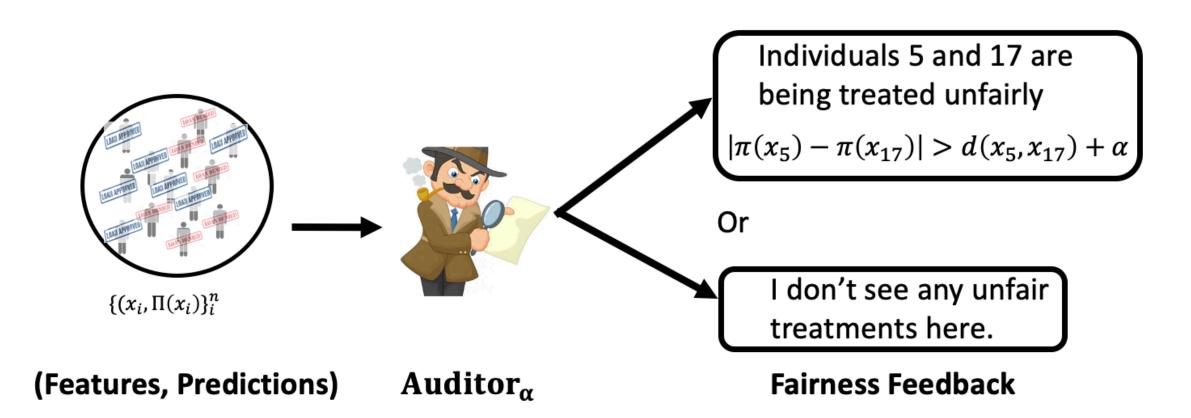
• "Similar Individuals should be treated similarly"



• Hard to enunciate what the metric d should be exactly even for domain experts

Fairness Auditor

• Rely on an auditor who can detect violations of individual fairness



Conclusion
1. Metric-Free: removed classical metric assumption

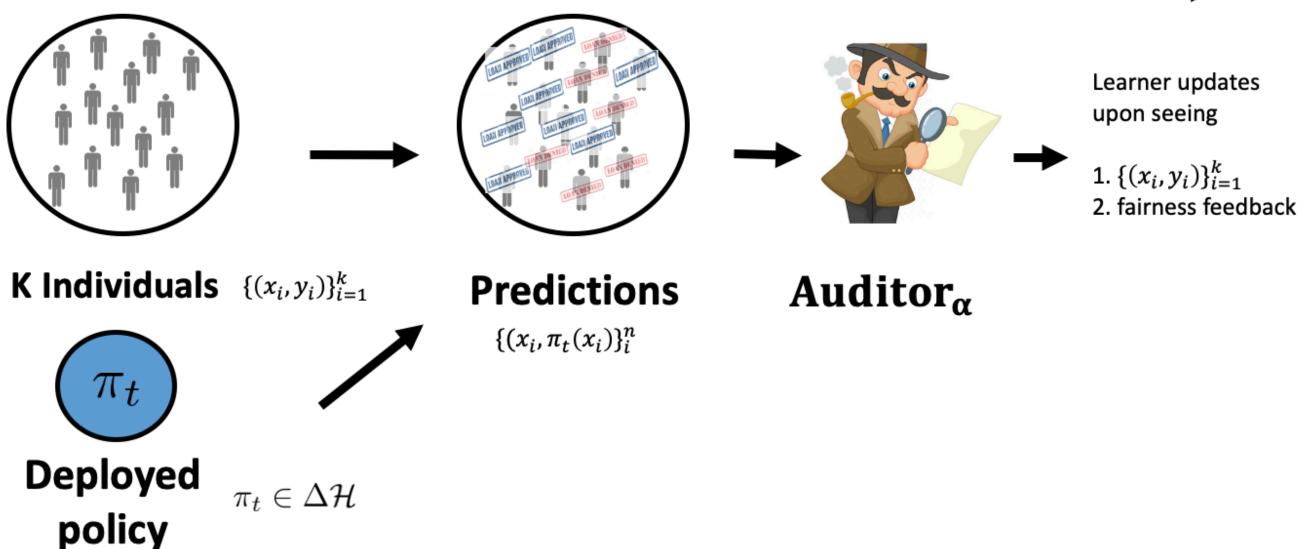
2. Easy Auditing: No complex, numerical queries / existence of fairness violations /single fairness violation reported

Yahav Bechavod, Hebrew University, Christopher Jung, University of Pennsylvania, Steven Wu, Carnegie Mellon University



Online learning

Time [1,...,T]



Comparison to previous work

- No parametric assumption on the underlying metric of the auditor d doesn't need to satisfy triangle inequality.
- No need for numerical distance queries.
 Ilvento (2018) suggests learning through distance queries between individuals.
- Single fairness feedback
 Gillen et al. (2018) requires all fairness violations to be reported by the auditor.
 We require only one fairness violation to be reported by the auditor.

Objectives

1. Fairness loss

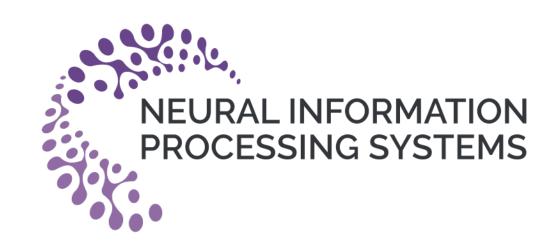
Fair*Loss* =
$$\sum_{t} 1$$
[Auditor _{α} complains on day t]

2. Classification error against other α –fair policies

 $Regret_{Misclassification}$

 $= \sum_{t} E_{f \sim \pi_t} \left[\left[1[f(x_t) \neq y_t] \right] - \min_{\pi^* \in \Pi_{\alpha - fair}} \sum_{t} E_{f \sim \pi^*} \left[\left[1[f(x_t) \neq y_t] \right] \right] \right] \right]$

3. **General**: no parametric assumption on hypothesis class / metric



Results

(1) Adversarial arrival

Algorithm 1: Online Fair Batch Classification Algorithm 2: Online Batch Classification BATCH FAIR-BATCH for t = 1, ..., T do for t = 1, ..., T do Learner deploys π^t Learner deploys π^t Environment chooses (\bar{x}^t, \bar{y}^t) Environment chooses $z^t = (\bar{x}^t, \bar{y}^t)$ Learner incurs misclassification loss Environment chooses the pair ρ^t $\operatorname{Err}(\pi^t, z^t)$ $z^t = (\bar{x}^t, \bar{y}^t) \times \rho^t$ Learner incurs misclassification loss $Err(\pi^t, z^t)$ end Learner incurs fairness loss $\text{Unfair}(\pi^t, z^t)$

> Regret-preserving reduction by adding in some carefully chosen examples to the batch.

Inherit the regret of the algorithm in online contextual learning without fairness constraints.

 $Regret_{Misclassification}$, FairLoss $\leq Regret(online algorithm)$

1. No-regret with respect to classification error

 $Regret_{Misclassification} = o(T)$

2. Sublinear Fairness Loss

FairLoss = o(T)

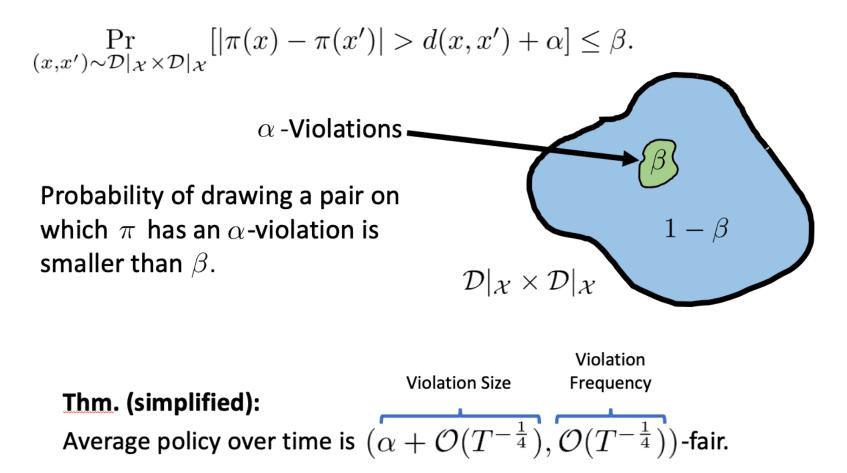
(2) Stochastic arrival

We consider the **average policy** deployed by the algorithm over time.

1. Misclassification error generalization Through vanilla online-to-batch conversion

2. Fairness generalization

 (α, β) -Fairness of π :



4. Efficient: oracle-efficient